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Abstract— We propose VLM-Social-Nav, a novel Vision-
Language Model (VLM) based navigation approach to compute
a robot’s motion in human-centered environments. Our goal is
to make real-time decisions on robot actions that are socially
compliant with human expectations. We utilize a perception
model to detect important social entities and prompt a VLM to
generate guidance for socially compliant robot behavior. VLM-
Social-Nav uses a VLM-based scoring module that computes
a cost term that ensures socially appropriate and effective
robot actions generated by the underlying planner. Our overall
approach reduces reliance on large training datasets and
enhances adaptability in decision-making. In practice, it results
in improved socially compliant navigation in human-shared
environments. We demonstrate and evaluate our system in four
different real-world social navigation scenarios with a Turtlebot
robot. We observe at least 27.38% improvement in the average
success rate and 19.05% improvement in the average collision
rate in the four social navigation scenarios. Our user study
score shows that VLM-Social-Nav generates the most socially
compliant navigation behavior.

I. INTRODUCTION

Mobile robots integrated into diverse indoor and out-
door human-centric environments are becoming increasingly
prevalent. These robots serve various functions, ranging from
package and food delivery [2] to service [3] and home assis-
tance [4]. Overall, these roles necessitate interaction with
humans and navigating seamlessly through public spaces
with pedestrians. In such dynamic scenarios, it is important
for the robots to engage in socially compliant interactions
and navigation [5], [6]. This paper focuses on the challenges
of social navigation [6].

Humans have various behaviors and the environmental
or task contexts cannot be easily categorized [6]. A com-
mon strategy to handle the challenge is by learning-based
approaches to learn the complicated contexts empirically.
Imitation Learning (IL) is a recent emerging paradigm for
desired navigation behavior [7], [8]. This approach enables
autonomous robots to navigate socially by learning from
human demonstrations. Other learning approaches, such as
reinforcement learning have also been used to address this
problem [9]. While both methods demonstrate promising
results in real-world settings, substantial datasets [10]–[12]
for training and reward engineering are required for their
successful application and it is hard to generalize.

Recent Large Language Models (LLMs) and Vision-
Language Models (VLMs) demonstrate a deep understanding
of contextual information and have the potential to perform
chain-of-thought [13] and common sense reasoning [14].
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Fig. 1. The trajectories of VLM-Social-Nav (red), DWA (blue), and BC
(yellow) approaches in the frontal encountering scenario (left) and the
intersection scenario (right). The resulting trajectories show that VLM-
Social-Nav demonstrates more socially compliant behavior because it is
instructed by a prompt.

Those processes are inherent to social navigation, especially
the challenges of contextual appropriateness and polite-
ness, which require understanding the task/environmental
context and the behavior of humans. This capability has
also been evaluated across diverse domains of robotics,
including human-like driving [15] and autonomous robot
navigation [16]. However, using language models for so-
cial navigation is not well explored, the language models
suffer from high latency for real-time navigation, and the
issue impedes the smoothness and efficiency of human-robot
interaction.

Main Results: In this paper, we present VLM-Social-
Nav, a new approach that uses VLMs to interpret contextual
information from robot observation to help autonomous
robots improve their navigation abilities in human-centered
environments. We leverage a VLM to analyze and reason
about the current social interaction and generate an imme-
diate preferred robot action to guide an underlying motion
planner. We formalize the concept of social cost and the
problem definition of social robot navigation suitable for
language descriptions. Our VLM-based scoring module com-
putes the social cost, which is used for a bottom-level motion
planner to output appropriate robot actions. To overcome the
limitation of existing VLMs’ latency issue, we utilize a state-
of-the-art perception model (i.e., YOLO [17]) to detect key
entities that are used for social interactions (e.g., humans,
gestures, and doors) and query a VLM to generate socially
compliant navigation behavior and compute the social cost.
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Fig. 2. The overall system architecture of VLM-Social-Nav. Our real-world perception model detects important social entities (e.g., humans, gestures, and
doors) in real time and prompts the VLM-based scoring module to compute social cost Csocial, which is used to generate socially compliant robot action.

II. APPROACH

A. Problem Definition

Navigation is the task of generating and following an
efficient collision-free path from an initial location to a
goal [6]. For social robot navigation, humans are no longer
perceived only as dynamic obstacles but also as social
entities [5]. It necessitates integrating social norms into robot
behaviors. We define the social robot navigation problem
as a Markov Decision Process (MDP): ⟨S,A, T , C⟩, where
s = (x, y, θ) ∈ S is a state consisting of a robot pose,
a = (v, w) ∈ A is an action consisting of a linear and
an angular velocity of the robot, T : S × A → S is the
transition function characterizing the dynamics of the robot,
and C : S × A → R is a cost function. Given a cost
function C, the motion planner finds (v∗, w∗) that minimizes
the expected cost. The cost function takes the following form:

C(s,a) = α · Cgoal + β · Cobst + γ · Csocial, (1)

where Cgoal encourages movement toward the goal, Cobst
discourages collisions with obstacles, and Csocial encourages
the robot to follow the social norms. α, β, and γ are non-
negative weights for each cost term.

The social cost term Csocial encompasses various factors
that govern human-robot interactions in shared environments.
Defining them mathematically poses challenges. For VLM-
Social-Nav, we define Csocial as:

Csocial = ∥B − Bh∥, (2)

where B is a navigation behavior and Bh is a navigation
behavior humans would adopt in accordance with social
conventions. Minimizing the deviation between them will
encourage the robot to emulate socially acceptable human be-
haviors. While Bh can be obtained through various methods,
including large datasets [10]–[12], we leverage the power of
a VLM to compute appropriate behavior based on its rich
contextual understanding and nuanced interpretations from
perceived images and given prompts. We elaborate further
in Section II-C.

B. VLM-based Social Navigation Architecture

Fig. 2 highlights the overview of VLM-Social-Nav. Our
approach integrates a perception layer with an optimization-
based motion planner. The motion planner processes sensor

inputs and generates a robot action that minimizes the cost
function C.

While LiDAR detects geometric information useful for
obstacle avoidance, RGB images provide contextual details
of the current environment. They contain rich information
crucial for social navigation. To enhance navigation capa-
bilities within social contexts, we propose a VLM-based
scoring module. VLMs excel in contextual understanding,
interpreting scenes not solely based on visual features but
also considering social dynamics [18]. VLMs generate so-
cially appropriate robot actions based on current observations
and input instructions. Our VLM-based scoring module then
calculates a cost term to be used by the motion planner.

While VLMs can generate navigation behaviors that com-
ply with social norms, continuously querying large VLMs for
new responses is prohibitively computationally expensive for
real-time navigation. To address this challenge, we incorpo-
rate a real-time perception model. This model identifies so-
cial entities such as humans, gestures, and doors as the robot
navigates its environment. Our VLM-based scoring module
activates only when significant social cues are detected,
ensuring that the social cost term is integrated only when
necessary, i.e., when there is any human interaction involved.
This approach reduces the VLM queries and facilitates real-
time navigation efficiency for our approach.

C. VLM-based Scoring Module

VLM plays a crucial role in VLM-Social-Nav in inferring
immediate socially compatible navigation behavior Bt+1

h

based on its pre-trained large internet-scale dataset:

Bt+1
h = VLM(It,P,at), (3)

where It is an RGB image from the robot view at time t, P
is a textual prompt, and at is a current robot action at time
t. Inspired by In-Context Learning (ICL), our prompt P is
designed to leverage the VLM’s reasoning abilities through
zero-shot examples. This approach offers an interpretable
interface, mirroring human reasoning and decision-making
processes, without extensive training [19].

Our VLM-based scoring module starts from the insight
that the action space of a mobile robot can be readily mapped
to linguistic terms. For example, the action “move forward at
a constant speed” can be linked to a linear velocity of vt m/s
and an angular velocity of 0. The heading direction on the



(a
)

Fr
on

ta
l

A
pp

ro
ac

h
Move right, slow down

(b
)

In
te

rs
ec

tio
n

Move right, constant speed

(c
)

N
ar

ro
w

D
oo

rw
ay

STOP, slow down

Fig. 3. Qualitative Results: the robot navigation behaviors with VLM-Social-Nav for four social navigation scenarios: (a) Frontal Approach, (b) Intersection,
and (v) Narrow Doorway. The solid gray arrow shows the participant’s path. The solid red arrow shows the robot’s path. The red dashed arrow shows the
robot’s path after a stop motion. A caption on the top left shows the result from the VLM.

left indicates a positive value of wt, while the direction on
the right indicates a negative value. Leveraging this under-
standing, we structure the output of the VLM into a linguistic
format comprising the heading and the speed. Subsequently,
our scoring module extracts Bt+1

h 7→ (vt+1
h , wt+1

h ) ∈ A from
these tokens; vt+1

h = vt + δs, where δs is derived from the
response for the speed; wt+1

h = δd, where δd is derived from
the response for the heading. Thus, the social cost term for
the next time step can be calculated:

Ct+1
social = wl · ∥v − vt+1

h ∥+ wa · ∥w − wt+1
h ∥, (4)

where wl and wa are non-negative weights. Given all the
cost terms, our low-level optimization-based motion planner
finds the robot action (v∗, w∗) that minimizes the cost.

We provide a high-level task description along with an
image It captured from the robot’s perspective. Furthermore,
the current robot action at = (vt, wt) ∈ A is provided. The
angular velocity is mapped into corresponding directional
instructions based on predefined categories (i.e., positive
values correspond to left, values near zero to straight,
and negative values to right). Supplementary instructions
regarding walking etiquette are included. Although the VLM
demonstrates proficient navigation abilities in the absence of
explicit instructions, offering reasoning guidelines enhances
its decision-making processes [19].

III. EXPERIMENTS

A. Implementation Details

VLM-Social-Nav is tested on a Turtlebot 2 equipped with
a Velodyne VLP16 LiDAR, a Zed 2i camera, and a laptop
with an Intel i7 CPU and an Nvidia GeForce RTX 2080 GPU.
We use YOLO [17] as our real-world perception model to
detect key objects. Generative Pre-trained Transformer 4 with
Vision (GPT-4V) [14] is used as our VLM to comprehend
the social dynamics and output the immediate preferred robot
action. We combined our approach with a low-level motion
planner DWA [20]. We compare VLM-Social-Nav with DWA
without social cost Csocial and BC [21] trained on a state-of-
the-art, large-scale social navigation dataset, SCAND [11].

Evaluating the social aspects of social robot navigation
is inherently challenging [22]. To validate VLM-Social-Nav,
we carefully follow the social robot navigation studies [23],
[24], which set up the benchmark scenarios and the metrics
for measuring social compliance. We present qualitative,
quantitative, and user study results in four different social
navigation scenarios:

• Frontal Approach: A robot and a human approach each
other from two ends of a straight trajectory.

• Frontal Approach with Gesture: A robot and a human
approach each other from two ends of a straight trajec-



TABLE I
QUANTITATIVE RESULTS: PERFORMANCE COMPARISONS USING BC [21], DWA [20], AND VLM-SOCIAL-NAV

Metric Method Scenario

(a) Frontal Approach (b) Frontal Approach w/ Gesture (c) Intersection (d) Narrow Doorway

Success Rate (%) ↑
BC 38.10 0 33.33 42.86

DWA 100 0 90.48 100
VLM-Social-Nav 100 100 100 100

Collision Rate (%) ↓
BC 42.86 66.67 28.57 38.10

DWA 28.57 19.05 19.05 38.10
VLM-Social-Nav 14.29 0 4.76 9.52

User Study Score ↑
BC 2.80 ± 1.45 2.23 ± 1.54 2.80 ± 1.40 2.60 ± 1.33

DWA 3.99 ± 0.80 3.38 ± 0.64 3.57 ± 0.62 3.59 ± 0.83
VLM-Social-Nav 4.31 ± 0.72 4.28 ± 0.56 4.35 ± 0.70 4.04 ± 0.74

tory. The human recognizes the robot and then gestures
for it to stop.

• Intersection: A robot and a human cross each other on
perpendicular trajectories.

• Narrow Doorway: A robot and a human cross each
other’s paths by moving through a narrow doorway.

B. Qualitative Result

Fig. 3 shows snapshots of the resulting robot motion using
VLM-Social-Nav in three selected scenarios. We demon-
strate that VLM-Social-Nav follows the social convention
and navigates toward its goal as expected. Fig. 1 illustrates
the resulting trajectories of VLM-Social-Nav in comparison
to those of DWA and BC methods. A notable observation is
that, while DWA also effectively avoids collisions with in-
dividuals, VLM-Social-Nav generates trajectories that align
more closely with social norms. For instance, in the frontal
approach scenario, while DWA tends to maneuver around the
person either to the right or left, VLM-Social-Nav predomi-
nantly bypasses the person on the right side. Similarly, in the
intersection scenario, whereas DWA occasionally obstructs
the person’s path by veering to avoid collision directly in
front, VLM-Social-Nav adjusts its trajectory to pass behind
the individual, adapting effectively to the human’s move-
ment direction. Additionally, BC avoids humans but fails to
recover and follow the original path. This leads to many
failures in reaching the goal.

C. Quantitative Result

To further validate VLM-Social-Nav, we evaluate the
methods using three different metrics. The success rate
describes whether the robot reaches the goal. The collision
rate describes whether the robot collided with the human
or other objects in the environment. We also mark it as in
collision when we manually intervene to avoid an imminent
collision with the human subject or surroundings. The user
study score is an average score we obtained from the user
study detailed in Section III-D.

Table I reports the results averaged over 21 runs for
each method and scenario. The results demonstrate that
VLM-Social-Nav, DWA with social cost, outperforms other
methods in every metric. DWA excels at following a path

smoothly, yet it faces challenges in collision avoidance as it
relies solely on the LiDAR sensor and does not consider
social compliance. Most of the collisions occurred when
DWA navigated in a way that interfered with a person’s path,
for example, going in front of the person when intersecting.
We also observe that the outcomes of BC varied. At times,
when attempting to avoid collisions, it failed to return to its
original path and failed to reach the goal. VLM-Social-Nav
improves the average success rate by 27.38% and reduces
the average collision rate by 19.05% across four social
navigation scenarios.

D. User Study
To validate the social compliance of VLM-Social-Nav, we

conduct a user study. We ask the participants to walk along
the predefined trajectory and then to answer questionnaires
about the robot motion [24].The three methods are randomly
shuffled and repeated three times. Each scenario is tested on
seven participants. We use a five-level Likert scale to ask
participants to rate their agreement with these statements.

The user study scores in Table I show the study result.
Based on the results, it’s evident that VLM-Social-Nav
receives the highest level of agreement from participants
across all questions, indicating its strong adherence to social
norms. The standard error of the BC method was large,
indicating that the performance of the BC method was not
consistent.

IV. CONCLUSION

We propose a novel social navigation approach based on
VLMs, focusing on real-time, socially compliant decision-
making in human-centric environments. We utilize the per-
ception model to detect important social entities and prompt
a VLM to generate guidance for socially compliant behavior.
VLM-Social-Nav features a VLM-based scoring that en-
sures socially appropriate and effective robot actions. This
minimizes the dependence on extensive training datasets
and eliminates the necessity for explicit rules or hand-
tuned parameters typically associated with imitation learning
approaches. By furnishing textual instructions to VLM, we
can instruct the robot to adhere to specific navigation rules,
such as navigating on the right or left according to cultural
norms.
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